
19 Statistical thermodynamics:
the concepts

Solutions to exercises

Discussion questions

E19.1(b) Consider the value of the partition function at the extremes of temperature. The limit of q as T
approaches zero, is simply g0, the degeneracy of the ground state. As T approaches infinity, each
term in the sum is simply the degeneracy of the energy level. If the number of levels is infinite, the
partition function is infinite as well. In some special cases where we can effectively limit the number
of states, the upper limit of the partition function is just the number of states. In general, we see
that the molecular partition function gives an indication of the average number of states thermally
accessible to a molecule at the temperature of the system.

E19.2(b) The statistical entropy may be defined in terms of the Boltzmann formula, S = k lnW , whereW is the
statistical weight of the most probable configuration of the system. The relation between the entropy
and the partition function is developed in two stages. In the first stage, we justify Boltzmann’s formula,
in the second, we express W in terms of the partition function. The justification for Boltzmann’s
formula is presented in Justification 19.6. Without repeating the details of this justification, we can
see that the entropy defined through the formula has the properties we expect of the entropy. W
can be thought of as a measure of disorder, hence the greater W , the greater the entropy; and the
logarithmic form is consistent with the additive properties of the entropy. We expect the total disorder
of a combined system to be the product of the individual disorders and S = k lnW = k lnW1W2 =
k lnW1 + k lnW2 = S1 + S2.

In the second stage the formula relating entropy and the partition function is derived. This derivation
is presented in Justification 19.7. The expression for W , eqn 19.1, is recast in terms of probabilities,
which in turn are expressed in terms of the partition function through eqn 10. The final expression
which is eqn 19.34 then follows immediately.

E19.3(b) Since β and temperature are inversely related, strictly speaking one can never replace the other. The
concept of temperature is useful in indicating the direction of the spontaneous transfer of energy in
the form of heat. It seems natural to us to think of the spontaneous direction for this transfer to be
from a body at high T to one at low T . In terms of β, the spontaneous direction would be from low
to high and this has an unnatural feel.

On the other hand, β has a direct connection to the energy level pattern of systems of atoms and
molecules. It arises in a natural, purely mathematical, manner from our knowledge of how energy
is distributed amongst the particles of our atomic/molecular system. We would not have to invoke
the abstract laws of thermodynamics, namely the zeroth and second laws in order to define our
concept of temperature if we used β as the property to indicate the natural direction of heat flow.
We can easily demonstrate that β is directly related to the statistical weight W through the relation
β = (∂ lnW/∂U)N . W,U , and N are all concrete properties of an atomic/molecular system.

E19.4(b) Identical particles can be regarded as distinguishable when they are localized as in a crystal lattice
where we can assign a set of coordinates to each particle. Strictly speaking it is the lattice site that
carries the set of coordinates, but as long as the particle is fixed to the site, it too can be considered
distinguishable.
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Numerical exercises

E19.5(b) ni = Ne−βεi
q

where q =
∑
j

e−βεj

Thus
n2

n1
= e−βε2

e−βε1
= e−β(ε2−ε1) = e−β�ε = e−�ε/kT

Given
n2

n1
= 1

2
,�ε = 300 cm−1

k = (1.38066 × 10−23 J K−1)×
(

1 cm−1

1.9864 × 10−23 J

)
= 0.69506 cm−1 K−1

n2

n1
= e−�ε/kT

ln

(
n2

n1

)
= −�ε/kT

T = −�ε
k ln(n2/n1)

= �ε

k ln(n1/n2)

= 300 cm−1

(0.69506 cm−1 K−1) ln(2)
= 622.7 K ≈ 623 K

E19.6(b) (a) � = h

(
β

2πm

)1/2

[19.22] = h

(
1

2πmkT

)1/2

= (6.626 × 10−34 J s)

×
(

1

(2π)× (39.95)× (1.6605 × 10−27 kg)× (1.381 × 10−23 J K−1)× T

)1/2

= 276 pm

(T /K)1/2

(b) q = V

�3
[22] = (1.00 × 10−6 m3)× (T /K)3/2

(2.76 × 10−10 m)3
= 4.76 × 1022(T /K)3/2

(i) T = 300 K, � = 1.59 × 10−11 m = 15.9 pm , q = 2.47 × 1026

(ii) T = 3000 K, � = 5.04 pm , q = 7.82 × 1027

Question. At what temperature does the thermal wavelength of an argon atom become comparable
to its diameter?

E19.7(b) The translational partition function is

qtr = V

h3
(2kT πm)3/2

so
qXe

qHe
=
(
mXe

mHe

)3/2

=
(

131.3 u

4.003 u

)3/2

= 187.9



STATISTICAL THERMODYNAMICS: THE CONCEPTS 303

E19.8(b) q =
∑

levels

gj e−βεj = 2 + 3e−βε1 + 2e−βε2

βε = hcν̃

kT
= 1.4388(ν̃/cm−1)

T /K

Thus q = 2 + 3e−(1.4388×1250/2000) + 2e−(1.4388×1300/2000)

= 2 + 1.2207 + 0.7850 = 4.006

E19.9(b) E = U − U(0) = −N
q

dq

dβ
= −N

q

d

dβ
(2 + 3e−βε1 + 2e−βε2)

= −N
q

(
−3ε1e−βε1 − 2ε2e−βε2

)
= Nhc

q

(
3ν̃1e−βhcν̃1 + 2ν̃2e−βhcν2

)

=
(
NAhc

4.006

)
×
{

3(1250 cm−1)×
(

e−(1.4388×1250/2000)
)

+ 2(1300 cm−1)×
(

e−(1.4388×1300/2000)
)}

=
(
NAhc

4.006

)
× (2546 cm−1)

= (6.022 × 1023 mol−1)× (6.626 × 10−34 J s)× (2.9979 × 1010 cm s−1)× (2546 cm−1)

= 7.605 kJ mol−1

E19.10(b) In fact there are two upper states, but one upper level. And of course the answer is different if the
question asks when 15 per cent of the molecules are in the upper level, or if it asks when 15 per cent
of the molecules are in each upper state. The solution below assumes the former.

The relative population of states is given by the Boltzmann distribution

n2

n1
= exp

(−�E
kT

)
= exp

(−hcν̃
kT

)
so ln

n2

n1
= −hcν̃

kT

Thus T = −hcν̃
k ln(n2/n1)

Having 15 per cent of the molecules in the upper level means

2n2

n1
= 0.15

1 − 0.15
so

n2

n1
= 0.088

and T = −(6.626 × 10−34 J s)× (2.998 × 1010 cm s−1)× (360 cm−1)

(1.381 × 10−23 J K−1)× (ln 0.088)

= 213 K

E19.11(b) The energies of the states relative to the energy of the state with mI = 0 are −γNh̄B, 0,+ γNh̄B,
where γNh̄ = 2.04 × 10−27 J T−1. With respect to the lowest level they are 0, γNh̄, 2γNh̄.

The partition function is

q =
∑
states

e−Estate/kT

where the energies are measured with respect to the lowest energy. So in this case

q = 1 + exp

(−γNh̄B
kT

)
+ exp

(−2γNh̄B
kT

)
As B is increased at any given T , q decays from q = 3 toward q = 1 as shown in Fig. 19.1(a).
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2

Figure 19.1(a)

The average energy (measured with respect to the lowest state) is

〈E〉 =
∑

states Estatee−Estate/kT

q
=

1 + γNh̄B exp
(−γNh̄B

kT

)
+ 2γNh̄B exp

(−2γNh̄B
kT

)
1 + exp

(−γNh̄B
kT

)
+ exp

(−2γNh̄B
kT

)
The expression for the mean energy measured based on zero spin having zero energy becomes

〈E〉 =
γNh̄B − γNh̄B exp

(−2γNh̄B
kT

)
1 + exp

(−γNh̄B
kT

)
+ exp

(−2γNh̄B
kT

) =
γNh̄B

(
1 − exp

(−2γNh̄B
kT

))
1 + exp

(−γNh̄B
kT

)
+ exp

(−2γNh̄B
kT

)
As B is increased at constant T , the mean energy varies as shown in Fig. 19.1(b).

Figure 19.1(b)

The relative populations (with respect to that of the lowest state) are given by the Boltzmann factor

exp

(−�E
kT

)
= exp

(−γNh̄B
kT

)
or exp

(−2γNh̄B
kT

)

Note that
γNh̄B
k

= (2.04 × 10−27 J T−1)× (20.0 T)

1.381 × 10−23 J K−1
= 2.95 × 10−3 K

so the populations are

(a) exp

(
−2.95 × 10−3 K

1.0 K

)
= 0.997 and exp

(
2(−2.95 × 10−3 K)

1.0 K

)
= 0.994

(b) exp

(
−2.95 × 10−3K

298

)
= 1 − 1 × 10−5

and exp

(
2(−2.95 × 10−3 K)

298

)
= 1 − 2 × 10−5
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E19.12(b) (a) The ratio of populations is given by the Boltzmann factor
n2

n1
= exp

(−�E
kT

)
= e−25.0 K/T and

n3

n1
= e−50.0 K/T

(1) At 1.00 K
n2

n1
= exp

(−25.0 K

1.00 K

)
= 1.39 × 10−11

and
n3

n1
= exp

(−50.0 K

1.00 K

)
= 1.93 × 10−22

(2) At 25.0 K

n2

n1
= exp

(−25.0 K

25.0 K

)
= 0.368 and

n3

n1
= exp

(−50.0 K

25.0 K

)
= 0.135

(3) At 100 K

n2

n1
= exp

(−25.0 K

100 K

)
= 0.779 and

n3

n1
= exp

(−50.0 K

100 K

)
= 0.607

(b) The molecular partition function is

q =
∑
states

e−Estate/kT = 1 + e−25.0 K/T + e−50.0 K/T

At 25.0 K, we note that e−25.0 K/T = e−1 and e−50.0 K/T = e−2

q = 1 + e−1 + e−2 = 1.503

(c) The molar internal energy is

Um = Um(0)− NA

q

(
∂q

∂β

)
where β = (kT )−1

So Um = Um(0)− NA

q
(−25.0 K)k

(
e−25.0 K/T + 2e−50.0 K/T

)
At 25.0 K

Um − Um(0) = − (6.022 × 1023 mol−1)× (−25.0 K)× (1.381 × 10−23 J K−1)

1.503

× (e−1 + 2e−2)

= 88.3 J mol−1

(d) The molar heat capacity is

CV,m =
(
∂Um

∂T

)
V

= NA(25.0 K)k
∂

∂T

1

q

(
e−25.0 K/T + 2e−50.0 K/T

)

= NA(25.0 K)k ×
(

25.0 K

qT 2

(
e−25.0 K/T + 4e−50.0 K/T

)

− 1

q2

(
e−25.0 K/T + 2e−50.0 K/T

) ∂q
∂T

)

where
∂q

∂T
= 25.0 K

T 2

(
e−25.0 K/T + 2e−50.0 K/T

)
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so CV,m = NA(25.0 K)2k

T 2q

(
e−25.0 K/T + 4e−50.0 K/T − (e−25.0 K/T + 2e−50.0 K/T )2

q

)

At 25.0 K

CV,m = (6.022 × 1023 mol−1)× (25.0 K)2 × (1.381 × 10−23 J K−1)

(25.0 K)2 × (1.503)

×
(

e−1 + 4e−2 − (e−1 + 2e−2)2

1.503

)

= 3.53 J K−1 mol−1

(e) The molar entropy is

Sm = Um − Um(0)

T
+NAk ln q

At 25.0 K

Sm = 88.3 J mol−1

25.0 K
+ (6.022 × 1023 mol−1)× (1.381 × 10−23 J K−1) ln 1.503

= 6.92 J K−1 mol−1

E19.13(b)
n1

n0
= g1e−ε1/kT

g0e−ε0/kT
= g1e−�ε/kT = 3e−hcB/kT

Set
n1

n0
= 1

e
and solve for T .

ln

(
1

e

)
= ln 3 +

(−hcB
kT

)

T = hcB

k(1 + ln 3)

= 6.626 × 10−34 J s × 2.998 × 1010 cm s−1 × 10.593 cm−1

+1.381 × 10−23 J K−1 × (1 + 1.0986)

= 7.26 K

E19.14(b) The Sackur–Tetrode equation gives the entropy of a monoatomic gas as

S = nR ln

(
e5/2kT

p�3

)
where � = h√

2kT πm

(a) At 100 K

� = 6.626 × 10−34 J s{
2(1.381 × 10−23 J K−1)× (100 K)× π(131.3 u)× (1.66054 × 10−27 kg u−1)

}1/2

= 1.52 × 10−11 m
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and Sm = (8.3145 J K−1 mol−1) ln

(
e5/2(1.381 × 10−23 J K−1)× (100 K)

(1.013 × 105 Pa)× (1.52 × 10−11 m)3

)

= 147 J K−1 mol−1

(b) At 298.15 K

� = 6.626 × 10−34 J s{
2(1.381 × 10−23 J K−1)× (298.15 K)× π(131.3 u)× (1.66054 × 10−27 kg u−1)

}1/2

= 8.822 × 10−12 m

and Sm = (8.3145 J K−1 mol−1) ln

(
e5/2(1.381 × 10−23 J K−1)× (298.15 K)

(1.013 × 105 Pa)× (8.822 × 10−12 m)3

)

= 169.6 J K−1 mol−1

E19.15(b) q = 1

1 − e−βε = 1

1 − e−hcβν̃

hcβν̃ = (1.4388 cm K)× (321 cm−1)

600 K
= 0.76976

Thus q = 1

1 − e−0.76976
= 1.863

The internal energy due to vibrational excitation is

U − U(0) = Nεe−βε

1 − e−βε

= Nhcν̃e−hcν̃β

1 − e−hcν̃β = Nhcν̃

ehcν̃β − 1
= (0.863)× (Nhc)× (321 cm−1)

and hence
Sm

NAk
= U − U(0)

NAkT
+ ln q = (0.863)×

(
hc

kT

)
× (321 cm−1)+ ln(1.863)

= (0.863)× (1.4388 K cm)× (321 cm−1)

600 K
+ ln(1.863)

= 0.664 + 0.62199 = 1.286

and Sm = 1.286R = 10.7 J K−1 mol−1

E19.16(b) Inclusion of a factor of (N !)−1 is necessary when considering indistinguishable particles. Because
of their translational freedom, gases are collections of indistinguishable particles. The factor, then,
must be included in calculations on (a) CO2 gas .

Solutions to problems

Solutions to numerical problems

P19.4 S = k lnW or W = eS/k [19.30](
∂W

∂V

)
T ,N

= W

k

(
∂S

∂V

)
T ,N
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S = nR ln
e5/2V

N�3
= nR

[
lnV + ln

e5/2

N�3

]
(
∂S

∂V

)
T ,N

= nR

(
∂ lnV

∂V

)
T ,N

= nR

V
= NR

NAV(
∂W

∂V

)
T ,N

= NRW

NAkV
= NW

V

�W

W
≈ N

�V

V
= pV

kT

�V

V

≈ (1 × 105 Pa)× (20 m3)× (1 × 10−5)

(1.381 × 10−23 J K−1)× (300 K)

≈ 4.8 × 1021

Notice that the value of W is much larger than that of �W/W . For example, at the conventional
temperature the molar entropy of helium is 126 J K−1 mol−1. Therefore,

S = nSm =
(
pV

RT

)
Sm = (1 × 105 Pa)× (20 m3)× (126 J K−1 mol−1)

(8.315 J K−1 mol−1)× (298 K)

= 1.02 × 105 J K−1

S

k
= 1.02 × 105 J K−1

1.381 × 10−23 J K−1
= 7.36 × 1027

W = eS/k = e7.36×1027 = 103.20×1027

P19.6
n1

n0
= g1e−ε1/kT

g0e−ε0/kT
= 4

2
× e−�ε/kT = 4

2
× e−hcν̃/kT = 2e−{(1.4388×450)/300} = 0.23

The observed ratio is
0.30

0.70
= 0.43. Hence the populations are not at equilibrium .

P19.8 First we evaluate the partition function

q =
∑
j

gj e−βεj [19.12] =
∑
j

gj e−hcβν̃j

At 3287◦C = 3560 K, hcβ = 1.43877 cm K

3560 K
= 4.041 × 10−4 cm

q = 5 + 7e−{(4.041×10−4 cm)×(170 cm−1)} + 9e−{(4.041×10−4 cm)×(387 cm−1)}

+ 3e−{(4.041×10−4 cm)×(6557 cm−1)}

= (5)+ (7)× (0.934)+ (9)× (0.855)+ (3)× (0.0707) = 19.445

The fractions of molecules in the various states are

pj = gj e−βεj
q

[19.10] = gj e−hcβν̃j
q

p(3F2) = 5

19.445
= 0.257 p(3F3) = (7)× (0.934)

19.445
= 0.336

p(3F4) = (9)× (0.855)

19.445
= 0.396 p(4F1) = (3)× (0.0707)

19.445
= 0.011
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Comment.
∑
j pj = 1. Note that the most highly populated level is not the ground state.

P19.10 The partition function is the sum over states of the Boltzmann factor

q =
∑
states

exp

(
− E

kT

)
=
∑
states

exp

(
−hcG
kT

)
=
∑

levels

g exp

(
−hcG
kT

)

where g is the degeneracy. So, at 298 K

q = 1 + 3 exp

(
− (6.626 × 10−34 J s)× (2.998 × 1010 cm s−1)× (557.1 cm−1)

(1.381 × 10−23 J K−1)× (298 K)

)
+ · · ·

= 1.209

At 1000 K

q = 1 + 3 exp

(
− (6.626 × 10−34 J s)× (2.998 × 1010 cm s−1)× (557.1 cm−1)

(1.381 × 10−23 J K−1)× (1000 K)

)
+ · · ·

= 3.004

P19.11 q =
∑
i

e−βεi =
∑
i

e−hcβν̃i [19.11]

At 100 K, hcβ = 1

69.50 cm−1
and at 298 K, hcβ = 1

207.22 cm−1
. Therefore, at 100 K

(a) q = 1 + e−213.30/69.50 + e−435.39/69.50 + e−636.27/69.50 + e−845.93/69.50 = 1.049
and at 298 K

(b) q = 1 + e−213.30/207.22 + e−425.39/207.22 + e−636.27/207.22 + e−845.93/207.22 = 1.55

In each case, pi = e−hcβν̃i
q

[19.10]

p0 = 1

q
= (a) 0.953 , (b) 0.645

p1 = e−hcβν̃1

q
= (a) 0.044 , (b) 0.230

p2 = e−hcβν̃2

q
= (a) 0.002 , (b) 0.083

For the molar entropy we need to form Um − Um(0) by explicit summation

Um − Um(0) = NA

q

∑
i

εie
−βεi = NA

q

∑
i

hcν̃ie
−hcβν̃i [19.25, 19.26]

= 123 J mol−1 (at 100 K) , 1348 J mol−1 (at 298 K)

Sm = Um − Um(0)

T
+ R ln q [19.34]

(a) Sm = 123 J mol−1

100 K
+ R ln 1.049 = 1.63 J K−1 mol−1

(b) Sm = 1348 J mol−1

298 K
+ R ln 1.55 = 8.17 J K−1 mol−1
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Solutions to theoretical problems

P19.13 p = kT

(
∂ lnQ

∂V

)
T ,N

[20.4]

= kT

(
∂ ln(qN/N !)

∂V

)
T ,N

[19.46]

= kT

(
∂[N ln q − lnN !]

∂V

)
T ,N

= NkT

(
∂ ln q

∂V

)
T ,N

= NkT

(
∂ ln(V/�3)

∂V

)
T ,N

= NkT

(
∂[lnV − ln�3]

∂V

)
T ,N

= NkT

(
∂ lnV

∂V

)
T ,N

= NkT

V
or pV = NkT = nRT

P19.15 We draw up the following table

0 ε 2ε 3ε 4ε 5ε 6ε 7ε 8ε 9ε W

8 0 0 0 0 0 0 0 0 1 9
7 1 0 0 0 0 0 0 1 0 72
7 0 1 0 0 0 0 1 0 0 72
7 0 0 1 0 0 1 0 0 0 72
7 0 0 0 1 1 0 0 0 0 72
6 2 0 0 0 0 0 1 0 0 252
6 0 2 0 0 1 0 0 0 0 252
6 0 0 3 0 0 0 0 0 0 84
6 1 0 0 2 0 0 0 0 0 252
6 1 1 0 0 0 1 0 0 0 504
6 1 0 1 0 1 0 0 0 0 504
6 0 1 1 1 0 0 0 0 0 504
5 3 0 0 0 0 1 0 0 0 504
5 0 3 1 0 0 0 0 0 0 504
5 2 1 0 0 1 0 0 0 0 1512
5 2 0 1 1 0 0 0 0 0 1512
5 1 2 0 1 0 0 0 0 0 1512
5 1 1 2 0 0 0 0 0 0 1512
4 4 0 0 0 1 0 0 0 0 630
4 3 1 0 1 0 0 0 0 0 2520
4 3 0 2 0 0 0 0 0 0 1260
4 2 2 1 0 0 0 0 0 0 3780
3 5 0 0 1 0 0 0 0 0 504
3 4 1 1 0 0 0 0 0 0 2520
2 6 0 1 0 0 0 0 0 0 252
2 5 2 0 0 0 0 0 0 0 756
1 7 1 0 0 0 0 0 0 0 72
0 9 0 0 0 0 0 0 0 0 1

The most probable configuration is the “almost exponential” {4, 2, 2, 1, 0, 0, 0, 0, 0, 0}
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P19.16
nj

n0
= e−β(εj−ε0) = e−βjε, which implies that −jβε = ln nj − ln n0

and therefore that ln nj = ln n0 − jε

kT

Therefore, a plot of ln nj against j should be a straight line with slope − ε

kT
. Alternatively, plot

lnpj against j , since

lnpj = const − jε

kT

We draw up the following table using the information in Problem 19.8

j 0 1 2 3

nj 4 2 2 1
ln nj 1.39 0.69 0.69 0

[most probable configuration]

These are points plotted in Fig. 19.2 (full line). The slope is −0.46, and since
ε

hc
= 50 cm−1, the

slope corresponds to a temperature

T = (50 cm−1)× (2.998 × 1010 cm s−1)× (6.626 × 10−34 J s)

(0.46)× (1.381 × 10−23 J K−1)
= 160 K

(A better estimate, 104 K represented by the dashed line in Fig. 19.2, is found in Problem 19.18.)

1.6

1.2

0.8

0.4

0

−0.4
0 1 2 3 4j

Figure 19.2

(b) Choose one of the weight 2520 configurations and one of the weight 504 configurations, and
draw up the following table

j 0 1 2 3 4

W = 2520 nj 4 3 1 0 1
ln nj 1.39 1.10 0 −∞ 0

W = 504 nj 6 0 1 1 1
ln nj 1.79 −∞ 0 0 0

Inspection confirms that these data give very crooked lines.
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P19.19 (a) The form of Stirling’s approximation used in the text in the derivation of the Boltzmann
distribution is

ln x! = x ln x − x [19.2] or lnN ! = N lnN −N

and ln ni! = ni ln ni − ni which then leads to
[
N is cancelled by −∑

i ni
]

lnW = N lnN −
∑
i

ni ln ni [19.3]

If N ! = NN, lnN ! = N lnN , likewise ln ni! = ni ln ni and eqn 3 is again obtained.

(b) For ln x! = (
x + 1

2

)
ln x − x + 1

2 ln 2π [Marginal note, p. 631],
Since the method of undetermined multipliers requires only (Justification 19.3) d lnW , only the
terms d ln ni! survive. The constant term, 1

2 ln 2π , drops out, as do all terms inN . The difference,

then, is in terms arising from ln ni! We need to compare ni ln ni to 1
2 ln ni , as both these terms

survive the differentiation. The derivatives are
∂

∂ni
(ni ln ni) = 1 + ln ni ≈ ln ni [large ni]

∂

∂ni

(
1

2
ln ni

)
= 1

2ni

Whereas ln ni increases as ni increases,
1

2ni
decreases and in the limit becomes negligible. For

ni = 1×106, ln ni = 13.8,
1

2ni
= 5×10−7; the ratio is about 2×108 which could probably not

be seen in experiments. However, for experiments on, say, 1000 molecules, such as molecular
dynamics simulations, there could be a measurable difference.

Solutions to applications

P19.21
p(h)

p(h0)
= N(h)/V

N(h0)/V
= e−{(ε(h)−ε(h0))/kT } [19.6]

= e−mg(h−h0)/kT

For p(0) ≡ p0,

p(h)

p0
= e−mgh/kT

N (8.0 km)

N (0)
= N(8.0 km)/V

N(0)/V
= e

−M(O2)gh
RT

N (8.0 km)

N (0)
[O2] = e

−
{
(0.032 kg mol−1)×(9.81 m s−2)×(8.0×103 m)

(8.315 J K−1 mol−1)×(298 K)

}

= 0.36 for O2

N (8.0 km)

N (0)
[H2O] = e

−
{
(0.018 kg mol−1)×(9.81 m s−2)×(8.0×103 m)

(8.315 J K−1 mol−1)×(298 K)

}

= 0.57 for H2O
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P19.23 (a) The electronic partition function, qE, of a perfect, atomic hydrogen gas consists of the electronic
energies En that can be written in the form:

En =
(

1 − 1

n2

)
hcRH, n = 1, 2, 3, . . . , ∞,

where we have used the state n = 1 as the zero of energy (in contrast to the usual zero being
at infinite separation of the proton and electron, eqn 13.13). The degeneracy of each level is
gn = 2n2 where the n2 factor is the orbital degeneracy of each shell and the factor of 2 accounts
for spin degeneracy.

qE =
∞∑
n=1

gne−En/kT = 2
∞∑
n=1

n2e
−
(

1− 1
n2

)
C,

where C = hcRH/kTphotosphere = 27.301. qE, when written as an infinite sum, is infinitely

large because lim
n→∞

{
n2e

−(1− 1
n2 )C

}
= lim

n→∞
{
n2e−C} = e−C lim

n→∞(n
2) = ∞. The inclusion

of partition function terms corresponding to large n values is clearly an error.

(b) States corresponding to large n values have very large average radii and most certainly interact
with other atoms, thereby, blurring the distinct energy level of the state. Blurring interaction
most likely occurs during the collision between an atom in state n and an atom in the ground
state n = 1. Collisional lifetime broadening (eqn 16.25) is given by:

δEn = h

2πτ
= znh

2π
,

where zn = collisional frequency of nth state of atomic perfect gas

=
√

2σnc̄ρ

kT
=

√
2σnc̄ρNA

MH
(eqn 24.12)

c̄ = mean speed =
(

8RT

πM

) 1
2 = 1.106 × 104 m s−1 (eqn 24.7)

σn = collisional cross-section of nth state (Fig. 24.9)

= π(〈r〉n + a0)
2

= πa2
0

(
32
n + 2

2

)2

(Example 13.2)

Any quantum state within δE of the continuum of an isolated atom will have its energy blurred
by collisions so as to be indistinguishable from the continuum. Only states having energies in
the range 0 ≤ E < E∞ − δE will be a distinct atomic quantum state.

The maximum term, nmax, that should be retained in the partition function of a hydrogen atom
is given by

Enmax = E∞ − δEnmax

(
1 − 1

n2
max

)
hcRH = hcRH −

√
2πa2

0

(
3n2

max+2
2

)2
cρNAh

2πMH

with ρ = 1.99 × 10−4 kg m−3 and MH = 0.001 kg mol−1.
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The root function of a calculator or mathematical software may be used to solve this equation
for nmax.

nmax = 28 for atomic hydrogen of the photosphere

Furthermore, examination of the partition function terms n = 2, 3, . . . , nmax indicates that they
are negligibly small and may be discarded. The point is that very large n values should not be
included in qE because they do not reflect reality.

(c) ρn = 2 n2 e−En/kT

qE
where T = 5780 K (eqn 19.6)
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Figure 19.3

Even at the high temperature of the Sun’s photosphere only the ground electronic state is sig-
nificantly populated. This leads us to expect that at more ordinary temperatures only the ground
state of atom and molecules are populated at equilibrium. It would be a mistake to thoughtlessly
apply equilibrium populations to a study of the Sun’s photosphere, however, it is bombarded
with extremely high energy radiation from the direction of the Sun’s core while radiating at a
much low energy. The photosphere may show significant deviations from equilibrium.

See S. J. Strickler, J. Chem. Ed., 43, 364 (1966).


