
20 Statistical thermodynamics:
the machinery

Solutions to exercises

Discussion questions

E20.1(b) The symmetry number, σ , is a correction factor to prevent the over-counting of rotational states when
computing the high temperature form of the rotational partition function. An elementary interpretation
of σ is that it recognizes that in a homonuclear diatomic molecule AA the orientations AA′ and A′A
are indistinguishable, and should not be counted twice, so the quantity q = kT /hcB is replaced by
q = kT /σhcB with σ = 2. A more sophisticated interpretation is that the Pauli principle allows only
certain rotational states to be occupied, and the symmetry factor adjusts the high temperature form of
the partition function (which is derived by taking a sum over all states), to account for this restriction.
In either case the symmetry number is equal to the number of indistinguishable orientations of the
molecule. More formally, it is equal to the order of the rotational subgroup of the molecule.

E20.2(b) The temperature is always high enough (provided the gas is above its condensation temperature) for
the mean translational energy to be 3

2kT . The equipartition value. Therefore, the molar constant-

volume heat capacity for translation is CT
V,m = 3

2R.

Translation is the only mode of motion for a monatomic gas, so for such a gas CV,m = 3
2 R =

12.47 J K−1 mol−1: This result is very reliable: helium, for example has this value over a range of
2000 K.

When the temperature is high enough for the rotations of the molecules to be highly excited (when
T � θR) we can use the equipartition value kT for the mean rotational energy (for a linear rotor) to
obtain CV,m = R. For nonlinear molecules, the mean rotational energy rises to 3

2 kT , so the molar

rotational heat capacity rises to 3
2 R when T � θR. Only the lowest rotational state is occupied

when the temperature is very low, and then rotation does not contribute to the heat capacity. We can
calculate the rotational heat capacity at intermediate temperatures by differentiating the equation for
the mean rotational energy (eqn 20.29). The resulting expression, which is plotted in Fig. 20.9 of
the text shows that the contribution rises from zero (when T = 0) to the equipartition value (when
T � θR). Because the translational contribution is always present, we can expect the molar heat
capacity of a gas of diatomic molecules (CT

V,m +CR
V,m) to rise from 3

2R to 5
2R as the temperature is

increased above θR.
Molecular vibrations contribute to the heat capacity, but only when the temperature is high enough

for them to be significantly excited. The equipartition mean energy is kT for each mode, so the
maximum contribution to the molar heat capacity is R. However, it is very unusual for the vibrations
to be so highly excited that equipartition is valid and it is more appropriate to use the full expression for
the vibrational heat capacity which is obtained by differentiating eqn 20.32. The curve in Fig. 20.10
of the text shows how the vibrational heat capacity depends on temperature. Note that even when
the temperature is only slightly above the vibrational temperature, the heat capacity is close to its
equipartition value.

The total heat capacity of a molecular substance is the sum of each contribution (Fig. 20.11 of the
text). When equipartition is valid (when the temperature is well above the characteristic temperature
of the mode T � θM) we can estimate the heat capacity by counting the numbers of modes that are
active. In gases, all three translational modes are always active and contribute 3/2R to the molar
heat capacity. If we denote the number of active rotational modes by ν∗

R (so for most molecules at
normal temperatures ν∗

R = 2 for linear molecules, and 3 for nonlinear molecules), then the rotational
contribution is 1/2 ν∗

RR. If the temperature is high enough for ν∗
V vibrational modes to be active the
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vibrational contribution to the molar heat capacity is ν∗
RR. In most cases νV ≈ 0. It follows that the

total molar heat capacity is

CV,m = 1
2 (3 + ν∗

R + 2ν∗
V)R

E20.3(b) See Justification 20.4 for a derivation of the general expression (eqn 20.54) for the equilibrium
constant in terms of the partition functions and difference in molar energy, �rE0, of the products and
reactants in a chemical reaction. The partition functions are functions of temperature and the ratio
of partition functions in eqn 20.54 will therefore vary with temperature. However, the most direct
effect of temperature on the equilibrium constant is through the exponential term e−�rE0/RT . The
manner in which both factors affect the magnitudes of the equilibrium constant and its variation with
temperature is described in detail for a simple R ⇀↽ P gas phase equilibrium in Section 20.7(c) and
Justification 20.5.

Numerical exercises

E20.4(b) CV,m = 1
2 (3 + ν∗

R + 2ν∗
V)R [20.40]

with a mode active if T > θM. At low temperatures, the vibrational modes are not active, that is,
ν∗

V = 0; at high temperatures they are active and approach the equipartition value. Therefore

(a) O3: CV,m = 3R or 6R (3 × 3 − 6) vibrational modes

(b) C2H6: CV,m = 3R or 21R (3 × 8 − 6) vibrational modes

(c) CO2: CV,m = 5
2R or 6.5R (3 × 3 − 5) vibrational modes

where the first value applies to low temperatures and the second to high.

E20.5(b) The equipartition theorem would predict a contribution to molar heat capacity of 1
2R for every

translational and rotational degree of freedom and R for each vibrational mode. For an ideal gas,
Cp,m = R + CV,m. So for CO2

With vibrations CV,m/R = 3
( 1

2

)+ 2
( 1

2

)+ (3 × 4 − 6) = 6.5 and γ = 7.5

6.5
= 1.15

Without vibrations CV,m/R = 3
( 1

2

)+ 2
( 1

2

) = 2.5 and γ = 3.5

2.5
= 1.40

Experimental γ = 37.11 J mol−1 K−1

37.11 − 8.3145 J mol−1 K−1
= 1.29

The experimental result is closer to that obtained by neglecting vibrations, but not so close that
vibrations can be neglected entirely.

E20.6(b) The rotational partition function of a linear molecule is

qR = kT

σhcB
= (1.381 × 10−23 J K−1)T

σ(6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)B
= 0.6952(T /K)

σB/cm−1

(a) At 25◦C qR = 0.6952(25 + 273)

1.4457
= 143

(b) At 250◦C qR = 0.6952(250 + 273)

1.4457
= 251

E20.7(b) The symmetry number is the order of the rotational subgroup of the group to which a molecule
belongs (except for linear molecules, for which σ = 2 if the molecule has inversion symmetry and 1
otherwise).
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(a) CO2: Full group D∞h; subgroup C2 σ = 2 (d) SF6: Oh σ = 24

(b) O3: Full group C2v; subgroup C2 σ = 2 (e) Al2Cl6: D2d σ = 4

(c) SO3: Full group D3h; subgroup {E,C3, C
2
3 , 3C2} σ = 6

E20.8(b) The rotational partition function of nonlinear molecule is given by

qR = 1

σ

(
kT

hc

)3/2 ( π

ABC

)1/2

= 1

2

(
(1.381 × 10−23 J K−1) × (298 K)

(6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)

)3/2

×
(

π

(2.02736) × (0.34417) × (0.293535) cm−3

)1/2

= 5.84 × 103

This high-temperature approximation is valid if T � θR, where θR, the rotational temperature, is

θR = hc(ABC)1/3

k

= (6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)

1.381 × 10−23 J K−1

×[(2.02736) × (0.34417) × (0.293535) cm−3]1/3

= 0.8479 K

E20.9(b) qR = 5837 [Exercise 20.8(b)]

All rotational modes of SO2 are active at 25◦C; therefore

UR
m − UR

m(0) = ER = 3
2RT

SR
m = ER

T
+ R ln qR

= 3
2R + R ln(5836.9) = 84.57 J K−1 mol−1

E20.10(b) (a) The partition function is

q =
∑
states

e−Estate/kT =
∑

levels

ge−Elevel/kT

where g is the degeneracy of the level. For rotations of a symmetric rotor such as CH3CN, the
energy levels areEJ = hc[BJ(J +1)+(A−B)K2] and the degeneracies are gJ,K = 2(2J +1)
if K �= 0 and 2J + 1 if K = 0. The partition function, then, is

q = 1 +
∞∑
J=1

(2J + 1)e−{hcBJ (J+1)/kT }
(

1 + 2
J∑

K=1

e−{hc(A−B)K2/kT }
)

To evaluate this sum explicitly, we set up the following columns in a spreadsheet (values for
B = 5.2412 cm−1 and T = 298.15 K)
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J J (J + 1) 2J + 1 e−{hcBJ (J+1)/kT } J term e−{hc(A−B)K2/kT } K sum J sum

0 0 1 1 1 1 1 1
1 2 3 0.997 8.832 0.976 2.953 9.832
2 6 5 0.991 23.64 0.908 4.770 33.47
3 12 7 0.982 43.88 0.808 6.381 77.35
...

...
...

...
...

...
...

...

82 6806 165 4.18 × 10−5 0.079 8 × 10−71 11.442 7498.95
83 6972 167 3.27 × 10−5 0.062 2 × 10−72 11.442 7499.01

The column labelledK sum is the term in large parentheses, which includes the inner summation.
The J sum converges (to 4 significant figures) only at about J = 80; the K sum converges much
more quickly. But the sum fails to take into account nuclear statistics, so it must be divided by the

symmetry number. At 298 K, qR = 2.50 × 103 . A similar computation at T = 500 K yields

qR = 5.43 × 103 .

(b) The rotational partition function of a nonlinear molecule is given by

qR = 1

σ

(
kT

hc

)3/2 ( π

ABC

)1/2

At 298 K qR = 1

3

(
(1.381 × 10−23 J K−1) × (298 K)

(6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)

)3/2

×
(

π

(5.28) × (0.307)2 cm−3

)1/2

= 2.50 × 103

At 500 K qR = 1

3

(
(1.381 × 10−23 J K−1) × (500 K)

(6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)

)3/2

×
(

π

(5.28) × (0.307)2 cm−3

)1/2

= 5.43 × 103

E20.11(b) The rotational partition function of a nonlinear molecule is given by

qR = 1

σ

(
kT

hc

)3/2 ( π

ABC

)1/2

(a) At 25◦C

qR = 1

1

(
(1.381 × 10−23 J K−1) × (298 K)

(6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)

)3/2

×
(

π

(3.1252) × (0.3951) × (0.3505) cm−3

)1/2

= 8.03 × 103
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(b) At 100◦C

qR = 1

1

(
(1.381 × 10−23 J K−1) × (373 K)

(6.626 × 10−34 J s) × (2.998 × 1010 cm s−1)

)3/2

×
(

π

(3.1252) × (0.3951) × (0.3505) cm−3

)1/2

= 1.13 × 104

E20.12(b) The molar entropy of a collection of oscillators is given by

Sm = NA〈ε〉
T

+ R ln q

where 〈ε〉 = hcν̃

eβhcν̃ − 1
= k

θ

eθ/T − 1
and q = 1

1 − e−βhcν̃
= 1

1 − e−θ/T

where θ is the vibrational temperature hcν̃/k. Thus

Sm = R(θ/T )

eθ/T
− R ln(1 − e−θ/T )

A plot of Sm/R versus T/θ is shown in Fig. 20.1.
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Figure 20.1

The vibrational entropy of ethyne is the sum of contributions of this form from each of its seven
normal modes. The table below shows results from a spreadsheet programmed to compute Sm/R at
a given temperature for the normal-mode wavenumbers of ethyne.

T = 298 K T = 500 K
ν̃/cm−1 θ/K T/θ Sm/R T/θ Sm/R

612 880 0.336 0.208 0.568 0.491
729 1049 0.284 0.134 0.479 0.389

1974 2839 0.105 0.000766 0.176 0.0228
3287 4728 0.0630 0.00000217 0.106 0.000818
3374 4853 0.0614 0.00000146 0.103 0.000652

The total vibrational heat capacity is obtained by summing the last column (twice for the first two
entries, since they represent doubly degenerate modes).
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(a) At 298 K Sm = 0.685R = 5.70 J mol−1 K−1

(b) At 500 K Sm = 1.784R = 14.83 J mol−1 K−1

E20.13(b) The contributions of rotational and vibrational modes of motion to the molar Gibbs energy depend
on the molecular partition functions

Gm − Gm(0) = −RT ln q

The rotational partition function of a nonlinear molecule is given by

qR = 1

σ

(
kT

hc

)3/2 ( π

ABC

)1/2 = 1.0270

σ

(
(T /K)3

ABC/cm−3

)1/2

and the vibrational partition function for each vibrational mode is given by

qV = 1

1 − e−θ/T
where θ = hcν̃/k = 1.4388(ν̃/cm−1)/(T /K)

At 298 K qR = 1.0270

2

(
2983

(3.553) × (0.4452) × (0.3948)

)1/2

= 3.35 × 103

and GR
m − GR

m(0) = −(8.3145 J mol−1 K−1) × (298 K) ln 3.35 × 103

= −20.1 × 103 J mol−1 = −20.1 kJ mol−1

The vibrational partition functions are so small that we are better off taking

ln qV = − ln(1 − e−θ/T ) ≈ e−θ/T

ln qV
1 ≈ e−{1.4388(1110)/298} = 4.70 × 10−3

ln qV
2 ≈ e−{1.4388(705)/298} = 3.32 × 10−2

ln qV
3 ≈ e−{1.4388(1042)/298} = 6.53 × 10−3

so GV
m −GV

m(0) = −(8.3145 J mol−1 K−1)×(298 K)×(4.70×10−3 +3.32×10−2 +6.53×10−3)

= −110 J mol−1 = −0.110 kJ mol−1

E20.14(b) q =
∑
j

gj e−βεj , g = (2S + 1) ×
{

1 for ) states
2 for *,�, . . . states

[Section 17.1]

Hence

q = 3 + 2e−βε [the 3) term is triply degenerate, and the 1� term is doubly (orbitally)
degenerate]

At 400 K

βε = (1.4388 cm K) × (7918.1 cm−1)

400 K
= 28.48

Therefore, the contribution to Gm is

Gm − Gm(0) = −RT ln q [Table 20.1, n = 1]

−RT ln q = (−8.314 J K−1 mol−1) × (400 K) × ln(3 + 2 × e−28.48)

= (−8.314 J K−1 mol−1) × (400 K) × (ln 3) = −3.65 kJ mol−1
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E20.15(b) The degeneracy of a species with S = 5
2 is 6. The electronic contribution to molar entropy is

Sm = Um − Um(0)

T
+ R ln q = R ln q

(The term involving the internal energy is proportional to a temperature-derivative of the parti-
tion function, which in turn depends on excited state contributions to the partition function; those
contributions are negligible.)

Sm = (8.3145 J mol−1 K−1) ln 6 = 14.9 J mol−1 K−1

E20.16(b) Use Sm = R ln s [20.52]
Draw up the following table

n: 0 1 2 3 4 5 6
o m p a b c o m p

s 1 6 6 6 3 6 6 2 6 6 3 6 1
Sm/R 0 1.8 1.8 1.8 1.1 1.8 1.8 0.7 1.8 1.8 1.1 1.8 0

where a is the 1, 2, 3 isomer, b the 1, 2, 4 isomer, and c the 1, 3, 5 isomer.

E20.17(b) We need to calculate

K =
∏

J

(
q −�−

J,m

NA

)νJ

× e−�E0/RT [Justification 20.4]

= q −�−
m (79Br2)q

−�−
m (81Br2)

q −�−
m (79Br81Br)2

e−�E0/RT

Each of these partition functions is a product

qT
mq

RqVqE

with all qE = 1.
The ratio of the translational partition functions is virtually 1 (because the masses nearly cancel;

explicit calculation gives 0.999). The same is true of the vibrational partition functions. Although
the moments of inertia cancel in the rotational partition functions, the two homonuclear species each
have σ = 2, so

qR(79Br2)q
R(81Br2)

qR(79Br81Br)2
= 0.25

The value of �E0 is also very small compared with RT , so

K ≈ 0.25

Solutions to problems

Solutions to numerical problems

P20.2 �ε = ε = gµBB [18.48, Section 18.14]

q = 1 + e−βε

CV,m/R = x2e−x

(1 + e−x)2
[Problem 20.1], x = 2µBBβ [g = 2]
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Therefore, if B = 5.0 T,

x = (2) × (9.274 × 10−24 J T−1) × (5.0 T)

(1.381 × 10−23 J K−1) × T
= 6.72

T/K

(a) T = 50 K, x = 0.134, CV = 4.47 × 10−3R, implying that CV = 3.7 × 10−2 J K−1 mol−1.
Since the equipartition value is about 3R [ν∗

R = 3, ν∗
V ≈ 0], the field brings about a change of

about 0.1 per cent

(b) T = 298 K, x = 2.26 × 10−2, CV = 1.3 × 10−4R, implying that CV = 1.1 mJ K−1 mol−1, a

change of about 4 × 10−3 per cent

Question. What percentage change would a magnetic field of 1 kT cause?

P20.4 q = 1 + 5e−βε [gj = 2J + 1]

ε = E(J = 2) − E(J = 0) = 6hcB [E = hcBJ (J + 1)]

U − U(0)

N
= − 1

q

∂q

∂β
= 5εe−βε

1 + 5e−βε

CV,m = −kβ2
(
∂Um

∂β

)
V

[20.35]

CV,m/R = 5ε2β2e−βε

(1 + 5e−βε)2
= 180(hcBβ)2e−6hcBβ

(1 + 5e−6hcBβ)2

hcB

k
= 1.4388 cm K × 60.864 cm−1 = 87.571 K

Hence,

CV,m/R = 1.380 × 106e−525.4 K/T

(1 + 5e−525.4 K/T ) × (T /K)2

We draw up the following table

T/K 50 100 150 200 250 300 350 400 450 500

CV,m/R 0.02 0.68 1.40 1.35 1.04 0.76 0.56 0.42 0.32 0.26

These points are plotted in Fig. 20.2.
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Figure 20.2
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P20.6
qT

m

NA
= 2.561 × 10−2 × (T /K)5/2 × (M/g mol−1)3/2 [Table 20.3]

= (2.561 × 10−2) × (298)5/2 × (28.02)3/2 = 5.823 × 106

qR = 1

2
× 0.6950 × 298

1.9987
[Table 20.3] = 51.81

qV = 1

1 − e−2358/207.2
[Table 20.3] = 1.00

Therefore

q −�−
m

NA
= (5.823 × 106) × (51.81) × (1.00) = 3.02 × 108

Um − Um(0) = 3
2RT + RT = 5

2RT [T � θT, θR]

Hence

S −�−
m = Um − Um(0)

T
+ R

(
ln

q −�−
m

NA
+ 1

)

= 5
2R + R{ln 3.02 × 108 + 1} = 23.03R = 191.4 J K−1 mol−1

The difference between the experimental and calculated values is negligible, indicating that the
residual entropy is negligible.

P20.9 (a) Rotational state probability distribution,

PR
J (T ) = (2J + 1)e−hcBJ (J+1)/kT∑

J=0
(2J + 1)e−hcBJ (J+1)/kT

, [20.14]

is conveniently plotted against J at several temperatures using mathematical software. This
distribution at 100 K is shown below as both a bar plot and a line plot.
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Figure 20.3(a)
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The plots show that higher rotational states become more heavily populated at higher temperature.
Even at 100 K the most populated state has 4 quanta of rotational energy; it is elevated to 13
quanta at 1000 K.

Values of the vibrational state probability distribution,

PV
ν (T ) = e−νhcν̃/kT (1 − e−hcν̃/kT )−1, [20.21]

are conveniently tabulated against ν at several temperatures. Computations may be discontinued
when values drop below some small number like 10−7.

P V
ν (T )

ν 100 K 300 K 600 K 1000 K
0 1 1 0.995 0.956
1 2.77 × 10−14 3.02 × 10−5 5.47 × 10−3 0.042
2 9.15 × 10−10 3.01 × 10−5 1.86 × 10−3

3 1.65 × 10−7 8.19 × 10−5

4 3.61 × 10−6

5 1.59 × 10−7

Only the state ν = 0 is appreciably populated below 1000 K and even at 1000 K only 4% of the
molecules have 1 quanta of vibrational energy.

(b) θR = hcB

k
=
(
6.626 × 10−34 J s

) (
3.000 × 108 m s−1) (193.1 m−1)

1.381 × 10−23 J K−1
(Section 20.2b)

θR = 2.779 K

Since θR � T where T is the lowest temperature of current interest (100 K), we expect that the
classical rotational partition function,

qR
classical(T ) = kT

hcB
, [20.15a]
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should agree well with the rotational partition function calculated with the discrete energy
distribution,

qR =
∑
J=0

(2J + 1)e−hcBJ (J+1)/kT . [20.14]

A plot of the percentage deviation (qR
classical−qR)100/qR confirms that they agree. The maximum

deviation is about −0.9% at 100 K and the magnitude decreases with increasing temperature.

(c) The translational, rotational, and vibrational contributions to the total energy are specified by
eqns 20.28, 20.30, and 20.32. As molar quantities, they are:

UT = 3
2RT, UR = RT, UV = NAhcν̃

ehcν̃/kT − 1

The contributions to the energy change from 100 K are �UT(T ) = UT(T ) − UT(100 K), etc.
The following graph shows the individual contributions to the total molar internal energy change
from 100 K. Translational motion contributes 50% more than the rotational motion because it
has 3 quadratic degrees of freedom compared to 2 quadratic degrees of freedom for rotation.
Very little change occurs in the vibration energy because very high temperatures are required to
populate ν = 1, 2, . . . . states (see Part a).

CV,m(T ) =
(
∂U(T )

∂T

)
V

=
(

∂

∂T

)
V

(UT + UR + UV) [2.19]

= 3

2
R + R + dUV

dT
= 5

2
R + dUV

dT
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Figure 20.3(c)
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The derivative dUV/dT may be evaluated numerically with numerical software (we advise
exploration of the technique) or it may be calculated with the analytical function of eqn 20.39:

CV
V,m = dUV

dT
= R

{
θV

T

(
e−θV/2T

1 − e−θV/T

)}2

where θV = hcν̃/k = 3122 K. The following graph shows the ratio of the vibrational contribu-
tion to the sum of translational and rotational contributions. Below 300 K, vibrational motions
makes a small, perhaps negligible, contribution to the heat capacity. The contribution is about
10% at 600 K and grows with increasing temperature.
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Figure 20.3(d)

The molar entropy change with temperature may be evaluated by numerical integration with
mathematical software.

�S(T ) = S(T ) − S(100 K) =
∫ T

100 K

Cp,m(T ) dT

T
[4.19]

=
∫ T

100 K

CV,m(T ) + R

T
dT [3.20]

=
∫ T

100 K

7
2R + CV

V,m(T )

T
dT

�S(T ) = 7

2
R ln

(
T

100 K

)
︸ ︷︷ ︸

�ST+R(T )

+
∫ T

100 K

CV
V,m(T )

T
dT︸ ︷︷ ︸

�SV(T )

Even at the highest temperature the vibrational contribution to the entropy change is less than
2.5% of the contributions from translational and rotational motion.

The vibrational contribution is negligible at low temperature.
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Figure 20.3(e)

P20.10 K = q −�−
m (CHD3)q

−�−
m (DCl)

q −�−
m (CD4)q

−�−
m (HCl)

e−β�E0 [20.54, NA factors cancel]

The ratio of translational partition functions is

qT
m(CHD3)q

T
m(DCl)

qT
m(CD4)q

T
m(HCl)

=
(
M(CHD3)M(DCl)

M(CD4)M(HCl)

)3/2

=
(

19.06 × 37.46

20.07 × 36.46

)3/2

= 0.964

The ratio of rotational partition functions is

qR(CHD3)q
R(DCl)

qR(CD4)q
R(HCl)

= σ(CD4)

σ (CHD3)

(B(CD4)/cm−1)3/2B(HCl)/cm−1

(A(CHD3)B(CHD3)
2/cm−3)1/2B(DCl)/cm−1

= 12

3
× 2.633/2 × 10.59

(2.63 × 3.282)1/2 × 5.445
= 6.24

The ratio of vibrational partition functions is

qV(CHD3)q
V(DCl)

qV(CD4)q
V(HCl)

= q(2993)q(2142)q(1003)3q(1291)2q(1036)2q(2145)

q(2109)q(1092)2q(2259)3q(996)3q(2991)

where q(x) = 1

1 − e−1.4388x/(T /K)

We also require �E0, which is equal to the difference in zero point energies

�E0

hc
= 1

2
{(2993 + 2142 + 3 × 1003 + 2 × 1291 + 2 × 1036 + 2145)

− (2109 + 2 × 1092 + 3 × 2259 + 3 × 996 + 2991)} cm−1

= −1053 cm−1

Hence,

K = 0.964 × 6.24 × Qe+1.4388×990/(T /K) = 6.02Qe+1424/(T /K)
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where Q is the ratio of vibrational partition functions. We can now evaluate K (on a computer), and
obtain the following values

T/K 300 400 500 600 700 800 900 1000

K 698 217 110 72 54 44 38 34

The values of K are plotted in Fig. 20.4.
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Figure 20.4

Solutions to theoretical problems

P20.13 (a) θV and θR are the constant factors in the numerators of the negative exponents in the sums that
are the partition functions for vibration and rotation. They have the dimensions of temperature
which occurs in the denominator of the exponents. So high temperature means T � θV or θR
and only then does the exponential become substantial. Thus θV is a measure of the temperature
at which higher vibrational and rotational states become populated.

θR = hcβ

k
= (2.998 × 108 m s−1) × (6.626 × 10−34 J s) × (60.864 cm−1)

(1.381 × 10−23 J K−1) × (1 m/100 cm)

= 87.55 K

θV = hcν̃

k
= (6.626 × 10−34 J s) × (4400.39 cm−1) × (2.998 × 108 m s−1)

(1.381 × 10−23 J K−1) × (1 m/100 cm)

= 6330 K

(b) and (c) These parts of the solution were performed with Mathcad 7.0 and are reproduced on the
following pages.

Objective: To calculate the equilibrium constantK(T ) andCp(T ) for dihydrogen at high temperature
for a system made with n mol H2 at 1 bar.

H2(g) ⇀↽ 2H(g)

At equilibrium the degree of dissociation, α, and the equilibrium amounts of H2 and atomic hydrogen
are related by the expressions

nH2 = (1 − α)n and nH = 2αn
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The equilibrium mole fractions are

xH2 = (1 − α)n/{(1 − α)n + 2αn} = (1 − α)/(1 + α)

xH = 2αn/{(1 − α)n + 2αn} = 2α/(1 + α)

The partial pressures are

pH2 = (1 − α)p/(1 + α) and pH = 2αp/(1 + α)

The equilibrium constant is

K(T ) = (pH/p
−�− )2/(pH2/p

−�− ) = 4α2(p/p −�− )/(1 − α2)

= 4α2/(1 − α2) where p = p −�− = 1 bar

The above equation is easily solved for α

α = (K/(K + 4))1/2

The heat capacity at constant volume for the equilibrium mixture is

CV (mixture) = nHCV,m(H) + nH2CV,m(H2)

The heat capacity at constant volume per mole of dihydrogen used to prepare the equilibrium mixture is

CV = CV (mixture)/n = {nHCV,m(H) + nH2CV,m(H2)}/n
= 2αCV,m(H) + (1 − α)CV,m(H2)

The formula for the heat capacity at constant pressure per mole of dihydrogen used to prepare the
equilibrium mixture (Cp) can be deduced from the molar relationship

Cp,m = CV,m + R

Cp = {
nHCp,m(H) + nH2Cp,m(H2)

}
/n

= nH

n

{
CV,m(H) + R

}+ nH2

n

{
CV,m(H2) + R

}
= nHCV,m(H) + nH2CV,m(H2)

n
+ R

(
nH + nH2

n

)
= CV + R(1 + α)

Calculations
J = joule s = second kJ = 1000 J
mol = mole g = gram bar = 1 × 105 Pa
h = 6.62608 × 10−34 J s c = 2.9979 × 108 m s−1 k = 1.38066 × 10−23 J K−1

R = 8.31451 J K−1 mol−1 NA = 6.02214 × 1023 mol−1 p −�− = 1 bar

Molecular properties of H2

ν = 4400.39 cm−1 B = 60.864 cm−1 D = 432.1 kJ mol−1

mH = 1 g mol−1

NA
mH2 = 2mH

θV = hcν

k
θR = hcB

k
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Computation of K(T ) and α(T )

N = 200 i = 0, . . . , N Ti = 500 K + i × 5500 K

N

9Hi
= h

(2πmHkTi)
1/2

9H2i
= h

(2πmH2kTi)
1/2

qVi = 1

1 − e−(θV/Ti)
qRi

= Ti

2θR

Keqi =
kTi

(
9H2i

)3
e−(D/RTi)

p −�− qVi qRi

(
9Hi

)6 αi =
(

Keqi

Keqi + 4

)1/2

See Fig. 20.5(a) and (b).
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Figure 20.5
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Heat capacity at constant volume per mole of dihydrogen used to prepare equilibrium mixture (see
Fig. 20.6(a))
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Figure 20.6(a)

CV (H) = 1.5R

CV (H2i ) = 2.5R +
[
θV

Ti
× e−(θV/2Ti)

1 − e−(θV/Ti)

]2

R CVi = 2αiCV (H) + (1 − αi)CV (H2i )

The heat capacity at constant pressure per mole of dihydrogen used to prepare the equilibrium
mixture is (see Fig. 20.6(b))

Cpi = CVi + R(1 + αi)
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Figure 20.6(b)
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P20.14 q = 1

1 − e−x
, x = h̄ωβ = hcν̃β = θV

T
[Table 20.3]

U − U(0) = −N

q

(
∂q

∂β

)
V

= −N(1 − e−x)
d

dβ
(1 − e−x)−1

= Nh̄ωe−x

1 − e−x
= Nh̄ω

ex − 1

CV =
(
∂U

∂T

)
V

= −kβ2 ∂U

∂β
= −kβ2h̄ω

∂U

∂x

= k(βh̄ω)2N

{
ex

(ex − 1)2

}
= kN

{
x2ex

(ex − 1)2

}

H − H(0) = U − U(0)[q is independent of V ] = Nh̄ωe−x

1 − e−x
= Nh̄ω

ex − 1

S = U − U(0)

T
+ nR ln q = Nkxe−x

1 − e−x
− Nk ln(1 − e−x)

= Nk

(
x

ex − 1
− ln(1 − e−x)

)

A − A(0) = G − G(0) = −nRT ln q

= NkT ln(1 − e−x)

The functions are plotted in Fig. 20.7.

P20.15 (a)
NJ

N
= gJ e−εJ /kT∑

J gJ e−εJ /kT
= gJ e−εJ /kT

q

For a linear molecule gJ = 2J + 1 and εJ = hcBJ (J + 1). Therefore,

NJ ∝ (2J + 1)e−hcBJ (J+1)/kT

(b) Jmax occurs when dnJ /dJ = 0.

dNJ

dJ
= N

q

d

dJ

{
(2J + 1)e

−
(
hcBJ (J+1)

kT

)}
= 0

2 − (2Jmax + 1)

(
hcB

kT

)
(2Jmax + 1) = 0

2Jmax + 1 =
(

2kT

hcB

)1/2

Jmax =
(

kT

2hcB

)1/2

− 1

2

(c) Jmax ≈ 3 because the R branch J = 3 → 4 transition has the least transmittance. Solving the
previous equation for T provides the desired temperature estimate.
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T ≈ hcB

2k
(2Jmax + 1)2

≈
(6.626 × 10−34 J s) × (3.000 × 108 m s−1) × (10.593 cm−1) ×

(
102 cm

m

)
× (7)2

2(1.38066 × 10−23 J K−1)

T ≈ 374 K

P20.17 All partition functions other than the electronic partition function are unaffected by a magnetic field;
hence the relative change in K is the relative change in qE.

qE =
∑
MJ

e−gµBβBMJ , MJ = − 3
2 , − 1

2 , + 1
2 , + 3

2 ; g = 4
3

Since gµBβB � 1 for normally attainable fields,

qE =
∑
MJ

{
1 − gµBβBMJ + 1

2
(gµBβBMJ )

2 + · · ·
}
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= 4 + 1

2
(gµBβB)2

∑
MJ

M2
J

[∑
MJ

MJ = 0

]
= 4

(
1 + 10

9
(µBβB)2

) [
g = 4

3

]

Therefore, if K is the actual equilibrium constant and K0 is its value when B = 0, we write

K

K0
=
(

1 + 10

9
(µBβB)2

)2

≈ 1 + 20

9
µ2

Bβ
2B2

For a shift of 1 per cent, we require

20
9 µ2

Bβ
2B2 ≈ 0.01, or µBβB ≈ 0.067

Hence

B ≈ 0.067kT

µB
= (0.067) × (1.381 × 10−23 J K−1) × (1000 K)

9.274 × 10−24 J T−1
≈ 100 T

Solutions to applications

P20.20 The standard molar Gibbs energy is given by

G −�−
m − G −�−

m (0) = RT ln
q −�−

m

NA
where

q −�−
m

NA
= q −�−

m,tr

NA
qRqVqE

Translation:
q −�−

m,tr

NA
= kT

p −�− 93
= 2.561 × 10−2(T /K)5/2(M/g mol−1)3/2

= (2.561 × 10−2) × (2000)5/2 × (38.90)3/2

= 1.111 × 109

Rotation of a linear molecule:

qR = kT

σhcB
= 0.6950

σ
× T/K

B/cm−1

The rotational constant is

B = h̄

4πcI
= h̄

4πcmeffR
2

where meff = mBmSi

mB + mSi

= (10.81) × (28.09)

10.81 + 28.09
× 10−3 kg mol−1

6.022 × 1023 mol−1

meff = 1.296 × 10−26 kg

B = 1.0546 × 10−34 J s

4π(2.998 × 1010 cm s−1) × (1.296 × 10−26 kg) × (190.5 × 10−12 m)2
= 0.5952 cm−1

so qR = 0.6950

1
× 2000

0.5952
= 2335



STATISTICAL THERMODYNAMICS: THE MACHINERY 335

Vibration: qV = 1

1 − e−hcν̃/kT
= 1

1 − exp
(−1.4388(ν̃/cm−1)

T /K

) = 1

1 − exp
(−1.4388(772)

2000

)
= 2.467

The Boltzmann factor for the lowest-lying electronic excited state is

exp

(−(1.4388) × (8000)

2000

)
= 3.2 × 10−3

The degeneracy of the ground level is 4 (spin degeneracy = 4, orbital degeneracy = 1), and that of
the excited level is also 4 (spin degeneracy = 2, orbital degeneracy = 2), so

qE = 4(1 + 3.2 × 10−3) = 4.013

Putting it all together yields

G −�−
m − G −�−

m (0) = (8.3145 J mol−1 K−1) × (2000 K) ln(1.111 × 109) × (2335)

× (2.467) × (4.013)

= 5.135 × 105 J mol−1 = 513.5 kJ mol−1

P20.22 The standard molar Gibbs energy is given by

G −�−
m − G −�−

m (0) = RT ln
q −�−

m

NA
where

q −�−
m

NA
= q −�−

m,tr

NA
qRqVqE

First, at 10.00 K

Translation:
q −�−

m,tr

NA
= 2.561 × 10−2(T /K)5/2(M/g mol−1)3/2

= (2.561 × 10−2) × (10.00)5/2 × (36.033)3/2

= 1752

Rotation of a nonlinear molecule:

qR = 1

σ

(
kT

hc

)3/2 ( π

ABC

)1/2 = 1.0270

σ
× (T /K)3/2

(ABC/cm−3)1/2

The rotational constants are

B = h̄

4πcI
so ABC =

(
h̄

4πc

)3 1

IAIBIC
,

ABC =
(

1.0546 × 10−34 J s

4π(2.998 × 1010 cm s−1)

)3

× (1010 Å m
−1

)6

(39.340) × (39.032) × (0.3082) × (u Å2)3 × (1.66054 × 10−27 kg u−1)3

= 101.2 cm−3

so qR = 1.0270

2
× (10.00)3/2

(101.2)1/2
= 1.614
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Vibration: qV = 1

1 − e−hcν̃/kT
= 1

1 − exp
(−1.4388(ν̃/cm−1)

T /K

) = 1

1 − exp
(−1.4388(63.4)

10.00

)
= 1.0001

Even the lowest-frequency mode has a vibrational partition function of 1; so the stiffer vibrations
have qV even closer to 1. The degeneracy of the electronic ground state is 1, so qE = 1. Putting it all
together yields

G −�−
m − G −�−

m (0) = (8.3145 J mol−1 K−1) × (10.00 K) ln(1752) × (1.614) × (1) × (1)

= 660.8 J mol−1

Now at 1000 K

Translation:
q −�−

m,tr

NA
= (2.561 × 10−2) × (1000)5/2 × (36.033)3/2 = 1.752 × 108

Rotation: qR = 1.0270

2
× (1000)3/2

(101.2)1/2
= 1614

Vibration: qV(1) = 1

1 − exp
(
− (1.4388)×(63.4)

1000

) = 11.47

qV(2) = 1

1 − exp
(
− (1.4388)×(1224.5)

1000

) = 1.207

qV(3) = 1

1 − exp
(
− (1.4388)×(2040)

1000

) = 1.056

qV = (11.47) × (1.207) × (1.056) = 14.62

Putting it all together yields

G −�−
m − G −�−

m (0) = (8.3145 J mol−1 K−1) × (1000 K) × ln(1.752 × 108) × (1614)

×(14.62) × (1)

= 2.415 × 105 J mol−1 = 241.5 kJ mol−1


